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ABSTRACT 
A numerical procedure is devised for the thermal analysis of three-dimensional large truss-type space 
structures exposed to solar radiation. Truss members made of an orthotropic material with a closed 
thin-walled cross-section of arbitrary shape are considered. Three-dimensional thermal effects are taken 
into account in the analysis. In the proposed method, the governing equations are first put into a weak 
form. Then the Galerkin finite element method is applied with respect to the axial coordinate of each truss 
member. The circumferential variation of the temperature is treated by a symbolically-coded harmonic 
balance procedure. The interaction between the various truss members is controlled by an iterative scheme. 
As a numerical example which demonstrates the proposed method, the temperature distribution in a 
parabolic dish structure is found. The results are compared to those obtained by standard one- and 
two-dimensional analyses. 
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INTRODUCTION 
The need for the thermal and thermoelastic analyses of large truss-type space structures, has 
grown significantly in the last few years. It has required special considerations not only in the 
application of numerical solution techniques but also in the mathematical modelling. The thermal 
problems involved are usually highly non-linear due to the presence of thermal radiation and 
non-linear material behaviour. In addition, the three-dimensional discretization of a large space 
structure would typically require a very large number of degrees of freedom if accurate results 
are desired. For this reason, in most of the previous works that dealt with the detailed thermal 
analysis of space structures, only one- or two-dimensional models were considered whereas 
three-dimensional effects were neglected. 

The underlying assumption in a one-dimensional thermal analysis is that the temperature 
variation within the cross-section of any of the rods comprising the structure may be neglected in 
comparison with the variation along the axial direction of the rod. This assumption is justified 
for space structures composed of sufficiently slender rods and made of thermally high-conductive 
materials such as metals. If one proceeds to compute the elastic deformation and stresses generated 
by the temperature field thus derived, the structural response in terms of tension, compression 
and buckling of various truss members can be obtained. 

Works that have adopted the one-dimensional approach include those of Thornton and his 
co-workers1-3, Ko4 , and Givoli and Rand5,6. Thornton et al.1 describe an integrated 
thermal-structural finite element formulation with solar radiation, and use a three member 
module of an orbiting truss as a testing model. Thornton and Paul2 review the subject of 
computerized thermal-structural analysis of large space structures, and use for illustration a 
tetrahedral truss structure as a model for a microwave radiometer system. Mahaney and 
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Thornton3 investigate the effects of self-shadowing on the thermal-structural behaviour of space 
structures. Ko4 describes in detail the thermal and elastic analyses performed for the space 
shuttle orbiter, including internal convection and radiation effects. Givoli and Rand5,6 propose 
a numerical method for thermal and elastic problems with periodic loading, which combines 
finite element spatial discretization in the axial direction and spectral treatment in time. 

A different approach is based on a two-dimensional analysis, and in a sense is complementary 
to the previous analysis. This approach starts from the assumption that the temperature variation 
along the axial direction of each rod is negligible with respect to the variation through the 
cross-section. This assumption has been shown to be appropriate for structures with slender 
thin-walled members made of laminated composite materials such as graphite/epoxy7. This type 
of response in a fibre/matrix material originates from the low thermal conductivity of the material 
in the axial direction. The temperature variation through the cross-sections of the structural 
members produces in turn elastic bending. The corresponding displacements and stresses can 
be obtained by performing a structural analysis on the basis of the results from the thermal 
analysis. 

The two-dimensional approach was adopted in the works by Mahaney et al.8 and Lutz 
et al.9. In the latter paper, the authors propose to use different finite element models for the thermal 
and structural analyses of a frame-type structure. The temperature field is first determined at 
selected cross-sections of some of the beam members, via a two-dimensional finite element 
thermal analysis. The forces and moments due to this temperature distribution are then calculated, 
and the global structural response of the structure is obtained from the elastic finite element 
model of the entire frame. 

The present paper proposes a numerical procedure for the three-dimensional thermal analysis 
of truss-type space structures. This means that both the axial and cross-sectional variations of 
the temperature are taken into account. The proposed procedure makes an effective tool for the 
analysis of both metallic and composite space structures with either long or short members. It 
can also be used as a first step in a detailed three-dimensional thermoelastic analysis. 

A straightforward use of a standard numerical method, such as the finite element method, for 
the solution of the governing equations in the three-dimensional domain defined by the structure, 
typically requires a very large computational effort, due to the tremendous number of degrees 
of freedom involved (see e.g. Chin et al.10). To avoid this aspect of the analysis, a special procedure 
is adopted in this paper. First, the governing equations are put into a weak form. Then a 
Galerkin finite element discretization is applied, but only with respect to the axial coordinate 
of each truss member separately. This results in a non-standard finite element formulation. The 
circumferential variation of the temperature is decomposed spectrally, and the Fourier coefficients 
of this decomposition are found by a symbolically-coded harmonic balance procedure developed 
in Rand and Givoli11. Finally, the interaction between the various truss members is controlled 
by an iterative scheme. Thus, the finite element spectral procedure outlined above is repeated 
in each iteration. 

In a numerical example which demonstrates the proposed method, we find the temperature 
distribution in a parabolic antenna dish exposed to solar radiation. We examine the influence 
of the dish orientation with respect to the radiation vector on the thermal response. Also, the 
results from the three-dimensional analysis are compared to those obtained by the corresponding 
one- and two-dimensional models. 

FINITE ELEMENT FORMULATION 
Consider a composite truss-type structure where each truss member has a uniform thin-walled 
closed cross-section of an arbitrary shape. Figure 1 shows a typical member in the structure. 
The axial coordinate is denoted ξ, and the circumferential coordinate along the midline of the 
thin cross-section is denoted s. The latter coordinate starts from an arbitrary point on the 
midline and measures arclength along this line. The maximum value of s, namely the 
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cross-sectional perimeter, is denoted p. The member's length is L and the thickness of the 
cross-section is t. The exterior surface of the rod is exposed to solar radiation. 

Some simplifying assumptions are made in the present model. The edges ξ=0 and ξ=L are 
assumed to converge geometrically to fit into the joints which connect the rod to other structural 
members. In these edges the cross-section is characterized by a single temperature, assumed to 
be identical for all the rods connected to the same joint. In other words, the joints are considered 
perfect conductors and lacking any heat capacity. In addition, it is assumed that two usually 
weak effects can be neglected, namely heat exchange through radiation between different truss 
members, and the thermodynamic influence of the elastic strain rate on the temperature field. 

The equation of steady-state heat conduction and radiation which holds in the three-
dimensional domain defined by the rod is: 

-CRu4 + q = 0 (1) 
Here u(ξ, s) is the temperature, K=[Kij] is the thermal conductivity tensor for the anisotropic 
material under consideration, CR is the radiation coefficient, and q is the given solar incident 
flux. The coefficient CR is given by: 

CR = (2) 

where σ is the universal Stefan-Boltzmann constant, and ε is the surface emissivity of the member. 
The incident flux q is calculated by: 

q(s)= qsun (3) 

Here qsun is the absolute value of the solar radiation vector, α is the surface absorptivity, ß0 is 
the 'view factor' associated with the orientation of the rod with respect to the solar radiation 
vector, and ßs(s) is the 'view factor' depending on the direction of the normal n to the outer 
surface of the cross-section at each point on the surface (see Figure 1). Both 'view factors' can 
have values between zero and one. 

The inclusion of the radiation and the heat flux terms in the differential equation (1) (rather 
than in the boundary conditions) and the presence of the factor 1/t in (2) and (3), originate 
from the fact that the rod is thin-walled and thus temperature variation through the cross-section 
in the direction normal to s is negligible. Equation (1) is supplemented by two boundary 
conditions at the edges ξ=0 and ξ= L and also by the requirement that the temperature u(ξ,s) 
is a periodic function in s with period p. The two boundary conditions at the edges are Dirichlet 
conditions, namely: 

u(0,s)=T1 u(L,s) = T2 (4) 
where T1 and T2 are regarded, for the time being, as given temperatures. 

For simplicity, it is further assumed that the conductivity tensor K in (1) has its principal 
directions along the ξ and s axes. In other words, the composite fibre matrix configuration of 
the rod is such that each rod is associated with two effective conductivities: the axial conductivity 
Kξ and the circumferential conductivity KS. Also, it should be noted that for thin-walled member 
the exact shape of the cross-section is irrelevant as far as heat conduction is concerned; the 
detailed cross-sectional geometry is important only for the determination of the radiation view 
factor ßs in (3). In this light, the first term in (1) becomes: 

(5) 

Now the Galerkin finite element is applied to (1) and (4) with respect to ξ only. Thus, each 
rod is divided into one-dimensional finite elements in the ξ direction, whereas variation with 
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respect to the variable s remains continuous. This results in the following system of ordinary 
differential equations in the variable s: 

Mdss(s)+Kd(s)+R(d(s))=F(s) (6) 
where 

M= K= R= F = 
me= ke= re= fe= (7) 

Here Nel is the total number of elements in the rod in the ξ direction, is the assembly 
operator, and me, ke, re and fe are the element matrices and vectors corresponding to the global 
matrices and vectors M, K, R and F. The subscript ss in (6) stands for the second derivative 
with respect to s. In (6), d is the global solution vector containing the nodal temperatures, and 
R is the radiation vector which depends non-linearly on d (see (10) below). The expressions for 
the element matrices and vectors are: 

NaKsNbdξ (8) 

N'aKξN'bdξ (9) 

NaCR dξ (10) 

Naqdξ- (11) 

Here Ωe is the element domain, Na is the element shape function associated with node a, Nen 
is the number of element nodes, and 

(12) 

The prime in (9) indicates differentiation with respect to ξ. 
The finite element matrix formulation (6)-(12) is clearly non-standard is some aspects, although 

it has a remarkable resemblance to the standard semi-discrete formulation in the one-dimensional 
time-dependent case, where s is analogous to time (see e.g. Hughes12). The matrix me is similar 
to the so-called element heat capacity matrix, with two differences: there is a minus sign in front 
of the integral in (8), and the coefficient appearing in the integrand is the conductivity KS rather 
than the heat capacity. Moreover, in (6) the matrix M multiplies the second s-derivative of the 
solution vector d. In this respect the formulation is more similar to that of structural dynamics, 
where me is analogous to the element mass matrix. However, the expressions (9)-(11) for the 
conductivity matrix ke, the radiation vector re and the thermal load vector fe are standard. 

Explicit expressions for (8)—(11) for a specific choice of shape functions can easily be obtained. 
In fact, such expressions are" analogous to those corresponding to the one-dimensional 
time-dependent case11,12, except that the standard expression for me has to be modified according 
to the remarks made previously. For example, in the case where Nen=2 and Na(a = l,2) are 
the linear shape functions, and assuming that Ks has the constant value in element e, (8) gives: 

m e = - (13) 

where he is the element length. 
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ANALYSIS IN THE CIRCUMFERENTIAL DIRECTION 
The solution of the system of ordinary differential equations (6) has to be considered next. The 
method of solution of this system is based on the spectral method devised by Rand and Givoli11 

in the time-periodic one-dimensional context. In this method, each s-dependent function in (6) is 
decomposed, using the discrete Fourier transform, into a finite number of harmonics, N, and 
the Fourier coefficients are found using a non-linear harmonic balance analysis. The idea to 
combine a finite element scheme with harmonic balance analysis was also recently proposed by 
Lewandowski13 for vibrating structures. 

To be more specific, consider any vector g(s) appearing in (6). This vector is approximately 
represented by the finite Fourier expansion, 

g(s)~g0+ (gcncos nΦ+gsnsin nΦ) (14) 

Here g0, gcn and gsn(n = l,...,iV) are real constant vectors, and Φ is the circumferential angle 
defined by Φ =2πs/p. Denoting the right hand side of (14) by the 'harmonic operator' 
HN(g0,{gcn},{gsn}), we can write (14) as: 

g~ HN(g0,{gcn},{gsn}) (15) 
Now, basic arithmetic operations can be performed with the harmonic representation (15). 

For example, given the two functions f~ HN(f0,{fcn},{fsn}) and g~ H N(g0, {gcn},{gsn}) and the 
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real constants a and b, it is easy to see that: 

~ (-1) ( j+1) /2 H N(0,{-njfsn},{njfsn}) j=1 ,3 ,5 , . . . (16) 

~ (-1)j/2 H N(0,{njfcn},{njfsn }) j=2,4,6,... (17) 

af + bg ~ HN(af0+bg0, a{fcn}+ b{gcn}, a{fsn}+b{gsn}) (18) 
The product fg can also be computed, and the result can be written in the form: 

fg ~ H N(h0,}{hcn},{hsn}) (19) 
Expressions for the Fourier coefficients of the product, h0, {hcn} and {hsn}, are given in 
Reference 11. 

All the variables in (6), namely all the entries of the vectors d, R and F, are expanded via 
(15). The Fourier coefficients F0, Fcn and Fsn associated with the thermal load vector F are 
found using a fast Fourier transform (FFT) scheme. The decomposition of the radiation vector 
R into its Fourier components is more involved and is considered now. First, we note that the 
kth entry of this vector, Rk, has the general form: 

Rk(d)= Ajkl(dk)j(dl)4-j (20) 

Here dk is the kth entry of the vector d, and the Ajkl are constants, where Ajkl≠0 only if node 
k and node l belong to the same element. The form (20) follows from the expression (10) for 
the element radiation vector, from the additive character of the assembly operator in (7), and 
from the property of locality that finite elements possess. Now each term in (20) is a product 
of temperature variables. For example, if j=3 then 

Ajkl(dk)(dl)4-j=A3kl(dk)(dk)(dk)(dl) (21) 
Thus, one can use the product formula (19) to compute Rk. All the calculations of this sort have 
been done symbolically by the computer code itself. We have used a symbolic manipulation 
program14 which is particularly suitable for harmonic-type calculations. 

After the Fourier expansions of d, R and F are substituted in (6), one obtains a non-linear 
coupled system of algebraic equations for the unknown coefficient vectors d0, dcnand dsn. Again, 
the formation of all these algebraic equations is performed symbolically by the code. The algebraic 
system of equations thus obtained is solved via a modified Newton-Raphson iterative 
procedure11. 

It should be noted that a standard 'time-integration' scheme can also be employed to solve 
the system (6), using finite differences in the variable s. However, in Reference 11 the comparison: 
between the proposed spectral method and a standard time-integration is discussed, and the. 
former is shown to be superior in many cases for solutions periodic in s. 

ITERATIVE SCHEME FOR UPDATING JOINT TEMPERATURES 
In the solution procedure outlined above for the temperature variation in the ξ and s directions 
it was assumed that all the joint temperatures were given, These joint temperatures were used 
in the boundary conditions (4) prescribed at the edges of each rod and appeared in the finite 
element formulation in (11) and (12). However, the joint temperatures are in fact unknown, and 
therefore an iterative scheme is needed to update them. The scheme starts from an 'initial guess' 
for all joint temperatures. Based on the these data, the finite element spectral analysis is performed 
for each rod separately, and the temperature field in the entire structure is found. Next all the 
joint temperatures are updated, according to the guidelines given below, and the finite element 
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spectral procedure is repeated. This yields a better solution, on the basis of which the joint 
temperatures are updated again, and so on. This process stops when convergence is achieved, 
namely when the differences between joint tempratures obtained in two successive iterations are 
sufficiently small. 

The scheme adopted here for updating the joint temperatures is as follows. Consider a certain 
joint which connects together J rods. It is clear that the net amount of heat flux entering the 
joint from all J rods must be zero. This can be stated by: 

(22) 

where Aj is the cross-sectional area of rod j , and u* is the approximate solution near the joint 
obtained by the finite-element spectral method. Now for the thin closed cross-section considered 
here we have dAj=(tjPj/2π)dΦ, where tj and pj are respectively the thickness and perimeter of 
rod j. Also, we replace ∂u*/∂ξ by the finite difference approximation (u*|ξ=Δ — U)/Δj. Here Δj 
is the length of the first finite element belonging to rod j and starting from the joint, and U is 
the value of the temperature at the joint, which is common to all the rods j = 1,..., J. This finite 
difference expression is in fact exact for linear two-node finite elements. Finally, we assume that 
Kξ in rod j has the constant value Kξj in the first element near the joint. Thus, (22) becomes: 

(u*|ξ=Δj-U)dΦ=0 (23) 

Now recall that u*(ξ,Φ) is composed of N Φ-harmonics as in (14), i.e.: 

u*= cos nΦ+ sin nΦ) (24) 

Only the zeroth-order harmonic will contribute to the integral in (23), the average of all 
higher harmonics being zero. Thus (23) gives: 

-U)=0 (25) 

Equation (25) can be solved for the joint temperature U, i.e. 

U= (26) 

This formula holds for every joint separately. Thus, (26) is used for updating all the joint 
temperatures on the basis of the results obtained from the preceding finite element spectral 
analysis. 

In the simplest case, when tj, pj, Kξj and Δj are equal for all the rods; j= 1,..., J, (26) reduces to: 

U = (27) 

In other words, the joint temperature U is simply the average of the temperature at the second 
node of all the rods connected to the joint. 

Various numerical experiments show that the iterative procedure outlined above which 
incorporates the updating formula (26) converges rapidly if the initial guess for the joint 
temperatures is reasonably close to the exact solution there. However, when the initial guess 
was significantly different from the exact solution the process diverged in some cases. We have 
found that this divergence can be prevented by limiting the allowed change per iteration for 
each joint temperature. Thus, when (26) results in an update in U which is larger (in percentage) 
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than a specified value ΔU, then U is updated only with the amount ΔU. This modification leads 
to convergence in all the cases that we have tested, even when the initial guess was far from the 
exact solution. 

CROSS-SECTIONAL GEOMETRY AND VIEW FACTORS 
Two view factors, ß0 and ßs(s), appear in (3) for the incident heat flux q(s) on each truss member. 
The value of the view factor ß0 is determined from the orientation of the rod with respect to 
the solar radiation vector, and from information related to self-shadowing. We presented5 

an algorithm for the calculation of this view factor for general transparent/opaque rotating 
structures. The view factor ßs(s) is calculated at each desired point on the perimeter of the 
cross-section from information associated to the geometrical shape of the cross-section. 

Consider for example the three cross-sections depicted in Figure 2a. The direction of the solar 
radiation vector is also indicated in the Figure in each case. The view factors ßs corresponding 
to the three cases are shown in Figure 2b, as functions of the circumferential angle Φ = 2ns/p. 
The graph of ßs for the circular cross-section is that of a truncated sine function, the reason for 
the truncation being that one part of the cross-section overshadows the other part. For the same 
reason, the graph of ßs for the square and rectangular cross-sections has a step-function character. 

We wish to demonstrate the influence that the shape of the cross-section has (through the 
view factor ßs) on the distribution of the temperature field. To this end we consider three infinite 
rods having the cross-sections shown in Figure 2a. The parameters are a=0.92, ß0 = 1, t=0.015 m, 
qsun = 1300 W/m2, Kξ=ks=10.1 W/m K, and CR=9.1 x 10 -7 W/m3 K4. We perform the spectral 
analysis to find the temperature in each case, bypassing the finite element and iterative procedures 
which are not needed in the case of an infinite rod. In Figure 2c the temperature distribution 
along the perimeter of the three cross-sections is shown. We see that although the view factors 
ßs for the three cross-sections, and subsequently the corresponding incident heat fluxes, are quite 
different from each other, the temperature distribution varies only slightly; there is a strong 
'smoothing' effect on the temperature field. The maximum temperatures for the circle, square 
and rectangle are 438 K, 418 K and 450 K, respectively. 

In the example above we have used 12 harmonics in the Fourier expansions of all the variables, 
namely we chose N = 12 in the representation (14). Although the first harmonic was dominant, 
as suggested from Figure 2c, it is not true that a much smaller number of harmonics than 12 
would yield results with the same numerical accuracy. Owing to the non-linear character of the 
analysis, the contribution of the coupling between two higher-order harmonics, say the third 
and fourth harmonics, to the first harmonic may be important even if the amplitudes of these 
two harmonics are relatively small. Notwithstanding, to obtain the results shown in Figure 2c, 
the circular cross-section required a slightly smaller number of harmonics than did the rectangular 
and square cross-sections. 

In general, one must make an adequate choice of the number of harmonics N in order to 
obtain accurate results. This can be done by performing a convergence test; if the addition of 
a few harmonics has only a minor effect on the results, then the number of harmonics is probably 
sufficient. In addition, if the last few harmonics of the results are not negligible with respect to 
the first harmonics then N must be increased. By using these two criteria one is able to find the 
necessary number of harmonics in a specific problem. 

TEMPERATURE DISTRIBUTION IN AN ANTENNA DISH 
Consider the graphite-epoxy parabolic dish structure shown in Figure 3. Such a dish can be 
used either as a concentrator for solar radiation or as an antenna for communication. The 
thermal and geometrical data are the same as in the previous section, except that here a = 0.28. 
The radii of the inner and outer rings are 5 and 20 m, respectively, and the depth between these 
rings is 6m. The global cartesian coordinate system x-y-z is introduced as shown in Figure 3. 
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All the truss members have a thin circular cross-section of radius 0.1 m. Each member in the 
structure is divided into seven finite elements with linear shape functions. These elements are 
not equally spaced, but rather graded using a cosine distribution in which the density of the 
elements is larger near the two edges than in the middle of the rod. In Figure 3 the rods numbered 
1, 16, 22 and 61 are indicated for future reference. Again we use 12 harmonics in the Fourier 
expansions of all the variables. 

Suppose the solar radiation vector lies in parallel to the x-z plane, and forms an angle Ψ with 
the negative-x axis. The dish is assumed to have a constant orientation with respect to the 
radiation vector, or else its orientation is assumed to change in time sufficiently slowly so that 
the response can be considered quasi-steady. (See Givoli and Rand5 for a discussion on the 
conditions permitting this assumption.) 

First, we use the procedure proposed previously to obtain the three-dimensional distribution of 
temperatures in the structure, with Ψ = 90°. In this case, the solar radiation vector is pointing in 
the — z direction. Based on the results of this analysis, Figure 4 shows the average temperature in 
the cross-section in (24)) as a function of the axial coordinate ξ for rods 1, 16, 22 and 61. 
Figure 5 shows the temperature distribution around the cross-section for the middle sections 
(ξ=L/2) of rods 1, 16, 22 and 61. The results demonstrate that the position of the rod in the 
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structure and its orientation have a significant influence on the temperature distribution both 
in the axial direction and in the circumferential direction. 

Now we repeat the three-dimensional analysis for Ψ=0°. In this case the solar radiation vector 
is pointing in the — x direction, namely in the direction of the dish axis. Figure 6 shows the 
average temperature in the cross-section as a function of ξ. Comparing this Figure to Figure 4 
we see that the temperature distribution is much more uniform in the Ψ=0o case than in the 
Ψ=90° one. Moreover, all the rods except rod 16 have the same average temperature, namely 
about 300 K. 

Next, we set the orientation angle again to be Ψ = 90°, and we compare the results obtained 
above to those which may be obtained by simpler one- and two-dimensional analyses. The 
one-dimensional approach ignores temperature distribution through the cross-section. The 
results for the temperature as a function of the axial coordinate ξ for rods 1, 16, 22 and 61 
obtained from a one-dimensional analysis turn out to coincide with those for the three-
dimensional average temperature shown in Figure 4. This is, in fact, expected since the 
one-dimensional model is supposed to describe the average behaviour in the cross-section of 
the three-dimensional model. However, the one-dimensional approach does not provide any 
information on the cross-sectional temperature variation. Consequently, no information is 
available with regard to the elastic bending of the various rods as a result of the thermal loading. 

Finally, we consider the two-dimensional approach, which assumes uniformity of the 
temperature field in the rod axial direction. In Figure 7 the temperature around the cross-section 
(at any location) of rod 61 obtained by the two-dimensional analysis, is compared to the 
temperature distribution obtained by the three-dimensional analysis around the cross-sections 
at eight locations of rod 61. These eight locations on the axis of the rod are the locations of the 
finite element nodal points. It is apparent from Figure 7 that the two-dimensional distribution 
coincides with the three-dimensional distribution at nodes 3-6 (in the central region of the rod), 
but that at the other four locations the results of the two analyses differ significantly. Moreover, 
in the two-dimensional approach information regarding the variation of temperatures or thermal 
stresses in the axial direction is unavailable. 

CONCLUSION 
In this paper we have proposed a special numerical procedure for the solution of thermal 
problems of truss-type space structures, which takes into account three-dimensional effects. The 
analysis based on this procedure produces the temperature distribution along the truss members 
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as well as through the cross-section. The proposed method avoids the need for a large number 
of degrees of freedom which is typical when using the standard finite element and finite difference 
methods in three dimensions. It was shown that in some situations one- and two-dimensional 
analyses do not provide sufficient or accurate information on the temperature distribution, and 
a three-dimensional analysis is required. Another important advantage of the proposed method 
is that it can serve as a first step in producing detailed three-dimensional thermoelastic 
information. 

Future investigation will include the extension of the proposed method to more complicated 
situations, e.g. problems involving rotating structures, thermal-elastic coupling, material 
non-linearity, and exchange of radiation among different members. In addition, an elastic analysis 
based on the results of the thermal analysis will be performed, and conclusions with regard to 
some optimal thermoelastic parameters of the structure will be drawn. 
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